Initiation of remote microvascular preconditioning requires K(ATP) channel activity.

نویسندگان

  • Lauren Mabanta
  • Patrick Valane
  • Jonathan Borne
  • Mary D Frame
چکیده

The purpose of this study was to investigate vascular preconditioning of individual microvascular networks. Prior work shows that exposure of downstream arterioles to specific agonists preconditions upstream arterioles so that they exhibit an altered local vasoactive response [remote microvascular preconditioning (RMP)]. We hypothesized that mitochondrial ATP-sensitive K+ (K(ATP)) channels were involved in stimulation of RMP. Arteriolar diameter (approximately 15 microm) was observed approximately 1,000 microm upstream of the remote exposure site in the cheek pouch of pentobarbital sodium-anesthetized (70 mg/kg) male hamsters (n = 104); all agonists were applied via micropipette. RMP was initiated by application of pinacidil (Pin), diazoxide (DZ), sodium nitroprusside (SNP), or bradykinin (BK) to the downstream vessel. After 15 min, RMP was apparent at the upstream observation site from testing of local vasoactive responses to L-arginine. Pin, DZ, SNP, and BK each stimulated RMP. To evaluate a specific role for mitochondrial K(ATP) channels in this response, 5-hydroxydecanoate was applied (via a 2nd pipette) during downstream stimulation with agonist. 5-Hydroxydecanoate blocked RMP initiated by Pin, DZ, or SNP, suggesting that mitochondrial K(ATP) channels are involved before SNP signal transduction. To verify this, we applied N(omega)-nitro-L-arginine during DZ or SNP stimulation. RMP was blocked during SNP, but not during DZ, stimulation. Thus stimulation of the RMP response requires mitochondrial K(ATP) channel activity after stimulation by nitric oxide donors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote preconditioning reduces ischemic injury in the explanted heart by a KATP channel-dependent mechanism.

Local and remote ischemic preconditioning (IPC) reduce ischemia-reperfusion (I/R) injury and preserve cardiac function. In this study, we tested the hypothesis that remote preconditioning is memorized by the explanted heart and yields protection from subsequent I/R injury and that the underlying mechanism involves sarcolemmal and mitochondrial ATP-sensitive K(+) (K(ATP)) channels. Male Wistar r...

متن کامل

Inducing late phase of infarct protection in skeletal muscle by remote preconditioning: efficacy and mechanism.

We have previously demonstrated that remote ischemic preconditioning (IPC) by instigation of three cycles of 10-min occlusion/reperfusion in a hindlimb of the pig elicits an early phase of infarct protection in local and distant skeletal muscles subjected to 4 h of ischemia immediately after remote IPC. The aim of this project was to test our hypothesis that hindlimb remote IPC also induces a l...

متن کامل

Adenosine primes the opening of mitochondrial ATP-sensitive potassium channels: a key step in ischemic preconditioning?

BACKGROUND Adenosine can initiate ischemic preconditioning, and mitochondrial ATP-sensitive potassium (K(ATP)) channels have emerged as the likely effectors. We sought to determine the mechanistic interactions between these 2 observations. METHODS AND RESULTS The mitochondrial flavoprotein oxidation induced by diazoxide (100 micromol/L) was used to quantify mitochondrial K(ATP) channel activi...

متن کامل

NO stimulation of ATP-sensitive potassium channels: Involvement of Ras/mitogen-activated protein kinase pathway and contribution to neuroprotection.

ATP-sensitive potassium (K(ATP)) channels regulate insulin release, vascular tone, and neuronal excitability. Whether these channels are modulated by NO, a membrane-permeant messenger in various physiological and pathological processes, is not known. The possibility of NO signaling via K(ATP) channel modulation is of interest because both NO and K(ATP) have been implicated in physiological func...

متن کامل

K(ATP) channel activation reduces the severity of postresuscitation myocardial dysfunction.

Postresuscitation myocardial dysfunction has been recognized as a leading cause of the high postresuscitation mortality rate. We investigated the effects of ischemic preconditioning and activation of ATP-sensitive K(+) (K(ATP)) channels on postresuscitation myocardial function. Ventricular fibrillation (VF) was induced in 25 Sprague-Dawley rats. Cardiopulmonary resuscitation (CPR), including me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 290 1  شماره 

صفحات  -

تاریخ انتشار 2006